摘要訊息 : 隨機變數, 期望以及一些它們的特徵和性質.

0. 前言

在本文中, 我們將要討論具有有限個結局試驗的機率模型可能產生的一些數字特徵.

更新紀錄 :

  • 2022 年 6 月 10 日進行第一次更新和修正.

1. 隨機變數

(Ω,A,P)(\Omega, \mathscr {A}, \mathbf {P}) 是某個具有有限個結局試驗的機率模型. 其中, A={A:AΩ}\mathscr {A} = \left \{ A : A \subseteq \Omega \right \}. 之前所討論的關於事件 AAA \in \mathscr {A}, 其機率的計算以及基本事件空間 Ω\Omega 的自然本性並不重要, 重要的是某種數字特徵, 它依賴於基本事件. 我們想要知道的是, 在一系列 nn 次試驗中, 出現 kk 次 (knk \leq n) 成功的機率如何等這一類問題.

定義 1. 稱任意定義在有限基本事件空間 Ω\Omega 上的數值函數 ξ=ξ(ω)\xi = \xi(\omega)隨機變數 (random variable).

例題 1. 對於接連兩次投擲硬幣模型, 其基本事件空間為 Ω={HH,HT,TH,TT}.\displaystyle {\Omega = \left \{ \mathrm {HH}, \mathrm {HT}, \mathrm {TH}, \mathrm {TT} \right \}}. 我們使用下列表格定義隨機變數 ξ=ξ(ω)\xi = \xi(\omega) :

ω\omega HH\mathrm {HH} HT\mathrm {HT} TH\mathrm {TH} TT\mathrm {TT}
ξ(ω)\xi(\omega) 22 11 11 00
其中, ξ(ω)\xi(\omega) 是事件 ω\omega 中, 投擲硬幣得到正面的次數.

通過例題 1, 我們不難得到關於隨機變數 ξ\xi 的另外一個簡單例子, 即集合的特徵函數 ξ=μ(ω).\displaystyle {\xi = \mu(\omega)}.

當實驗者遇到描繪某些記載或者讀數的隨機變數時, 他關心的基本問題是隨機變數取各個數值的機率如何? 從這種觀點出發, 實驗者關心的並非機率 P\mathop {\mathbf {P}}(Ω,A)(\Omega, \mathscr {A}) 上的分佈, 而是機率在隨機變數之可能值的集合上的分佈, 即隨機變數 ξ\xi 取到集合 C={c1,c2,...,cn}C = \left \{ c_{1}, c_{2}, ..., c_{n} \right \} 中某個值的機率分佈. 由於所研究的情形, Ω\Omega 由有限個點所構成, 則隨機變數 ξ\xi 的值域 RξR_{\xi} 也是有限的. 設 Rξ={r1,r2,...,rm}R_{\xi} = \left \{ r_{1}, r_{2}, ..., r_{m} \right \}, 其中, r1,r2,...,rmr_{1}, r_{2}, ..., r_{m}ξ\xi 的全部可能值.

R\mathscr {R} 是值域 RξR_{\xi} 上的一切子集的全體, 並且設 BRB \in \mathscr {R}. 當 RξR_{\xi} 是隨機變數 ξ\xi 的值域時, 集合 BB 也可以視為某個事件.

(Rξ,R)(R_{\xi}, \mathscr {R}) 上考慮由隨機變數 ξ\xiPξ(B)=P{ω:ξ(ω)B},BR\displaystyle {P_{\xi}(B) = \mathop {\mathbf {P}} \left \{ \omega : \xi(\omega) \in B \right \}, B \in \mathscr {R}} 產生的機率 Pξ()P_{\xi}(\cdot). 顯然, 這些機率的值完全取決於 Pξ(ri)=P{ω:ξ(ω)=ri},riRξ.\displaystyle {P_{\xi}(r_{i}) = \mathop {\mathbf {P}} \left \{ \omega : \xi(\omega) = r_{i} \right \}, r_{i} \in R_{\xi}}. 機率組 {Pξ(r1),Pξ(r2),...,Pξ(rm)}\left \{ P_{\xi}(r_{1}), P_{\xi}(r_{2}), ..., P_{\xi}(r_{m}) \right \} 稱作隨機變數 ξ\xi機率分佈 (probability distribution), 簡稱為分佈 (distribution).

例題 2-1. 設隨機變數 ξ\xi 分別以機率 ppqq 取到 1100 兩個值. 其中, pp 稱作成功的機率, qq 稱作失敗的機率. 則稱 ξ\xi 為 Bernoulli 隨機變數, 也稱隨機變數 ξ\xi 服從 Bernoulli 分佈. 顯然, 對於隨機變數 ξ\xiPξ(x)=pxq1x,x{0,1}.\displaystyle {P_{\xi}(x) = p^{x}q^{1 - x}, x \in \left \{ 0, 1 \right \}}.

例題 2-2. 設隨機變數 ξ\xi 以機率 Pξ(x)=(xn)pxqnxP_{\xi}(x) = \binom {x}{n}p^{x}q^{n - x}. 其中, x=0,1,2,,nx = 0, 1, 2, …, n. 取 0,1,...,n0, 1, ..., nn+1n + 1 個值, 則稱隨機變數 ξ\xi二項隨機變數 (binomial random variable), 或者說隨機變數 ξ\xi 服從二項分佈.

我們可以發現, 在例題 2 中, 我們已經不關心基本機率空間 (Ω,A,P)(\Omega, \mathscr {A}, \mathbf {P}) 的構造了, 而只是關心隨機變數的值及其機率分佈.

2. 分佈函數

定義 2.xRx \in R, 函數 Fξ(x)=P{ω:ξ(ω)x}\displaystyle {F_{\xi}(x) = \mathop {\mathbf {P}} \left \{ \omega : \xi(\omega) \leq x \right \}} 稱作隨機變數 ξ\xi分佈函數 (distribution function).

根據隨機變數分佈函數的定義, 我們容易得到 Fξ(x)={i:xix}Pξ(xi).\displaystyle {F_{\xi}(x) = \sum \limits_{\left \{ i : x_{i} \leq x \right \}}P_{\xi}(x_{i})}. 除此之外, Pξ(xi)=Fξ(xi)Fξ(xi).\displaystyle {P_{\xi}(x_{i}) = F_{\xi}(x_{i}) - F_{\xi}(x_{i}^{-})}. 其中, Fξ(xi)=limxxiFξ(x)F_{\xi}(x_{i}^{-}) = \lim \limits_{x \to x_{i}^{-}}F_{\xi}(x). 特別地, 若有 x1<x2<...<xmx_{1} < x_{2} < ... < x_{m}Fξ(x0)=0F_{\xi}(x_{0}) = 0, 則有 Pξ(xi)=Fξ(xi)Fξ(xi1),i=1,2,...,n.\displaystyle {P_{\xi}(x_{i}) = F_{\xi}(x_{i}) - F_{\xi}(x_{i - 1}), i = 1, 2, ..., n}.

直接由定義 2, 我們可以得到分佈函數的三條性質 :

  1. limxFξ(x)=0\lim \limits_{x \to -\infty}F_{\xi}(x) = 0;
  2. limx+Fξ(x)=1\lim \limits_{x \to +\infty}F_{\xi}(x) = 1;
  3. Fξ(x)F_{\xi}(x) 具有右連續性, 即 limxx0+Fξ(x0)=x0\lim \limits_{x \to x_{0}^{+}}F_{\xi}(x_{0}) = x_{0}, 且 Fξ(x)F_{\xi}(x) 為階梯函數.

除了隨機變數之外, 我們通常還研究隨機向量 (random vector) ξ=(ξ1,ξ2,...,ξr)\xi = (\xi_{1}, \xi_{2}, ..., \xi_{r}), 其各分量都是隨機變數. 對於多項分佈來說, 對象為隨機向量 υ=(υ1,υ2,...,υr)\upsilon = (\upsilon_{1}, \upsilon_{2}, ..., \upsilon_{r}). 其中, υi=υi(ω)\upsilon_{i} = \upsilon_{i}(\omega) 是序列 ω=(a1,a2,...,an)\omega = (a_{1}, a_{2}, ..., a_{n}) 中等於 bib_{i} (i=1,2,,ri = 1, 2, …, r) 的分量的數量.

對於 xiXix_{i} \in X_{i} (XiX_{i}ξi\xi_{i} 一切可能值的集合, i=1,2,...,ri = 1, 2, ..., r), 機率 Pξ(x1,x2,...,xr)=P{ω:ξ(ω)=x1,ξ2(ω)=x2,...,ξr(ω)=xr}\displaystyle {P_{\xi}(x_{1}, x_{2}, ..., x_{r}) = \mathop {\mathbf {P}} \left \{ \omega : \xi(\omega) = x_{1}, \xi_{2}(\omega) = x_{2}, ..., \xi_{r}(\omega) = x_{r} \right \}} 的全體稱為隨機向量 ξ=(ξ1,ξ2,...,ξr)\xi = (\xi_{1}, \xi_{2}, ..., \xi_{r}) 的機率分佈, 而函數 Fξ(x1,x2,...,xr)=P{ω:ξ1(ω)x1,ξ2(ω)x2,...,ξr(ω)xr}\displaystyle {F_{\xi}(x_{1}, x_{2}, ..., x_{r}) = \mathop {\mathbf {P}} \left \{ \omega : \xi_{1}(\omega) \leq x_{1}, \xi_{2}(\omega) \leq x_{2}, ..., \xi_{r}(\omega) \leq x_{r} \right \}} 稱為隨機向量 ξ=(ξ1,ξ2,...,ξr)\xi = (\xi_{1}, \xi_{2}, ..., \xi_{r}) 的分佈函數. 其中, xiR (i=1,2,...,r)x_{i} \in R\ (i = 1, 2, ..., r). 那麼對於多項分佈的向量 υ=(υ1,υ2,...,υr)\upsilon = (\upsilon_{1}, \upsilon_{2}, ..., \upsilon_{r}), 有 Pυ(n1,n2,...,nr)=(n1,n2,...,nrn)p1n1p2n2...prnr.\displaystyle {P_{\upsilon}(n_{1}, n_{2}, ..., n_{r}) = \dbinom {n_{1}, n_{2}, ..., n_{r}}{n}p_{1}^{n_{1}}p_{2}^{n_{2}}...p_{r}^{n_{r}}}.

定義 3.ξ1,ξ2,...,ξr\xi_{1}, \xi_{2}, ..., \xi_{r} 是一組在 RR 中的有限集合 XX 上取值的隨機變數. 記 X\mathscr {X}XX 中所有子集的代數. 若對於任意 x1,x2,...,xrXx_{1}, x_{2}, ..., x_{r} \in X, 有 P{ξ1=x1,ξ2=x2,...,ξr=xr}=P{ξ1=x1}P{ξ2=x2}...P{ξr=xr};\displaystyle {\mathop {\mathbf {P}} \left \{ \xi_{1} = x_{1}, \xi_{2} = x_{2}, ..., \xi_{r} = x_{r} \right \} = \mathop {\mathbf {P}} \left \{ \xi_{1} = x_{1} \right \}\mathop {\mathbf {P}} \left \{ \xi_{2} = x_{2} \right \}...\mathop {\mathbf {P}} \left \{ \xi_{r} = x_{r} \right \}}; 或等價地, 對於任意 B1,B2,...,BrXB_{1}, B_{2}, ..., B_{r} \in \mathscr {X}, 有 P{ξB1,ξ2B2,...,ξrBr}=P{ξ1B1}P{ξ2B2}...P{ξrBr},\displaystyle {\mathop {\mathbf {P}} \left \{ \xi \in B_{1}, \xi_{2} \in B_{2}, ..., \xi_{r} \in B_{r} \right \} = \mathop {\mathbf {P}} \left \{ \xi_{1} \in B_{1} \right \}\mathop {\mathbf {P}} \left \{\xi_{2} \in B_{2} \right \}...\mathop {\mathbf {P}} \left \{ \xi_{r} \in B_{r} \right \}}, 則稱隨機變數 ξ1,ξ2,...,ξr\xi_{1}, \xi_{2}, ..., \xi_{r}全體獨立 (mutually independent) 的.

我們之前所討論的 Bernoulli 概型, 就是獨立隨機變數的一個例子. 具體地, 設 Ω={ω:ω=(a1,a2,...,an),ai=0,1 (i=1,2,...,n)},A={A:AΩ},P({ω})=p(ω)=piai(1p)niai,\displaystyle {\begin {aligned} &\Omega = \left \{ \omega : \omega = (a_{1}, a_{2}, ..., a_{n}), a_{i} = 0, 1 \ (i = 1, 2, ..., n) \right \}, \\ &\mathscr {A} = \left \{ A : A \subseteq \Omega \right \}, \mathop {\mathbf {P}}(\left \{ \omega \right \}) = p(\omega) = p^{\sum \limits_{i}a_{i}}(1 - p)^{n - \sum \limits_{i}a_{i}}, \end {aligned}} 並且對於 ω=(a1,a2,...,an)\omega = (a_{1}, a_{2}, ..., a_{n}), ξi(ω)=ai (i=1,2,...,n)\xi_{i}(\omega) = a_{i}\ (i = 1, 2, ..., n), 由於事件 A1={ω:a1=1},A2={ω:a2=1},...,An={ω:an=1}\displaystyle {A_{1} = \left \{ \omega : a_{1} = 1 \right \}, A_{2} = \left \{ \omega : a_{2} = 1 \right \}, ..., A_{n} = \left \{ \omega : a_{n} = 1 \right \}} 獨立, 從而隨機變數 ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n} 獨立.

如果隨機變數 ξ\xi 的值域 Rξ={x1,x2,...,xk}R_{\xi} = \left \{ x_{1}, x_{2}, ..., x_{k} \right \}, 隨機變數 η\eta 的值域為 Rη={y1,y2,...,yl}R_{\eta} = \left \{ y_{1}, y_{2}, ..., y_{l} \right \}, 則隨機變數 ζ=ξ+η\zeta = \xi + \eta 的值域為 Rζ={z:z=xi+yj,i=1,2,...,k,j=1,2,...,l}.\displaystyle {R_{\zeta} = \left \{ z : z = x_{i} + y_{j}, i = 1, 2, ..., k, j = 1, 2, ..., l \right \}}. 那麼顯然, Pζ(z)=P{ζ=z}=P{ξ+η=z}={(i,j):xi+yj=z}P{ξ=xi,η=yj}.\displaystyle {P_{\zeta}(z) = \mathop {\mathbf {P}} \left \{ \zeta = z \right \} = \mathop {\mathbf {P}} \left \{ \xi + \eta = z \right \} = \sum \limits_{\left \{ (i, j) : x_{i} + y_{j} = z \right \}}\mathop {\mathbf {P}} \left \{ \xi = x_{i}, \eta = y_{j} \right \}}.

例題 3. 若隨機變數 ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n} 是獨立的 Bernoulli 隨機變數, 且 P{ξi=1}=p,P{ξi=0}=q,i=1,2,...,n.\displaystyle {\mathop {\mathbf {P}} \left \{ \xi_{i} = 1 \right \} = p, \mathop {\mathbf {P}} \left \{ \xi_{i} = 0 \right \} = q, i = 1, 2, ..., n}. 證明 : 隨機變數 ζ=ξ1+ξ2+...ξn\zeta = \xi_{1} + \xi_{2} + ... \xi_{n} 服從二項分佈.

證明證明 :

我們使用歸納法進行證明.

n=2n = 2 時, Rζ={0,1,2}R_{\zeta} = \left \{ 0, 1, 2 \right \}. 那麼有 Pζ(0)=Pξ1(0)Pξ2(0)=q2=(02)p0q2,Pζ(1)=Pξ1(0)Pξ2(1)+Pξ1(1)Pξ2(0)=2pq=(12)p1q1,Pζ(2)=Pξ1(1)Pξ2(1)=p2=(22)p2q0.\displaystyle {\begin {aligned} &P_{\zeta}(0) = P_{\xi_{1}}(0)P_{\xi_{2}}(0) = q^{2} = \binom {0}{2}p^{0}q^{2}, \\ &P_{\zeta}(1) = P_{\xi_{1}}(0)P_{\xi_{2}}(1) + P_{\xi_{1}}(1)P_{\xi_{2}}(0) = 2pq = \binom {1}{2}p^{1}q^{1}, \\ &P_{\zeta}(2) = P_{\xi_{1}}(1)P_{\xi_{2}}(1) = p^{2} = \binom {2}{2}p^{2}q^{0}. \end {aligned}} 故當 n=2n = 2 時, 隨機變數 ζ=ξ1+ξ2\zeta = \xi_{1} + \xi_{2} 服從二項分佈.

不妨假設當 n<ln < l 時, 隨機變數 ζ=ξ1+ξ2+...+ξn\zeta = \xi_{1} + \xi_{2} + ... + \xi_{n} 服從二項分佈.

n=ln = l 時, Rζ={0,1,2,...,l}R_{\zeta} = \left \{ 0, 1, 2, ..., l \right \}. 那麼有 Pζ(0)=Pξ1(0)Pξ2(0)...Pξl(0)=ql=(0l)p0ql,Pζ(1)=Pξ1(1)Pξ2(0)...Pξl(0)+Pξ1(0)Pξ2(1)Pξ3(0)...Pξl(0)+...+    Pξ1(0)Pξ2(0)...Pξl1(0)Pξl(1)=qpl1=(1l)p1ql1,Pζ(l)=Pξ1(1)Pξ2(1)...Pξl(1)=pl=(ll)plq0.\displaystyle {\begin {aligned} &P_{\zeta}(0) = P_{\xi_{1}}(0)P_{\xi_{2}}(0)...P_{\xi_{l}}(0) = q^{l} = \binom {0}{l}p^{0}q^{l}, \\ &\begin {aligned} P_{\zeta}(1) &= P_{\xi_{1}}(1)P_{\xi_{2}}(0)...P_{\xi_{l}}(0) + P_{\xi_{1}}(0)P_{\xi_{2}}(1)P_{\xi_{3}}(0)...P_{\xi_{l}}(0) + ... + \\ &\ \ \ \ P_{\xi_{1}}(0)P_{\xi_{2}}(0)...P_{\xi_{l - 1}}(0)P_{\xi_{l}}(1) \\ &= qp^{l - 1} = \binom {1}{l}p^{1}q^{l - 1}, \end {aligned} \\ &\vdots \\ &P_{\zeta}(l) = P_{\xi_{1}}(1)P_{\xi_{2}}(1)...P_{\xi_{l}}(1) = p^{l} = \binom {l}{l}p^{l}q^{0}. \end {aligned}} 故當 n=ln = l 時, 隨機變數 ζ=ξ1+ξ2+...+ξn\zeta = \xi_{1} + \xi_{2} + ... + \xi_{n} 仍然服從二項分佈.

綜上所述, 隨機變數 ζ=ξ1+ξ2+...ξn\zeta = \xi_{1} + \xi_{2} + ... \xi_{n} 服從二項分佈.

\blacksquare

3. 數學期望

(Ω,A,P)(\Omega, \mathscr {A}, \mathbf {P}) 是有限機率空間, 而 ξ=ξ(ω)\xi = \xi(\omega) 是某一隨機變數, 其值域為 Rξ={x1,x2,...,xk}.\displaystyle {R_{\xi} = \left \{ x_{1}, x_{2}, ..., x_{k} \right \}}. 如果設 Ai={ω:ξ(ω)=xi}A_{i} = \left \{ \omega : \xi(\omega) = x_{i} \right \}, 則顯然 ξ\xi 可以表示為 ξ=ξ(ω)=i=1kxiμAi(ω).\displaystyle {\xi = \xi(\omega) = \sum \limits_{i = 1}^{k}x_{i}\mu_{A_{i}}(\omega)}. 其中, A1,A2,...,AkA_{1}, A_{2}, ..., A_{k} 構成集合 Ω\Omega 的分割, i=1,2,...,ki = 1, 2, ..., k, μAi(ω)\mu_{A_{i}}(\omega) 是集合 AiA_{i} 的特徵函數.

說明說明:

我來說明一下為何 ξ(ω)=i=1kxiμAi(ω)\xi(\omega) = \sum \limits_{i = 1}^{k}x_{i}\mu_{A_{i}}(\omega) 成立. 首先, 能夠使得 ξ(ω)=xi\xi(\omega) = x_{i} 成立的事件 ω\omega, 必有 ωAi\omega \in A_{i}. 那麼, μAi(ω)=1\mu_{A_{i}}(\omega) = 1. 對於其它 Aj (ji)A_{j}\ (j \neq i), 就有 ωAj\omega \notin A_{j}, 即這些 ω\omega 會使得 μAj{ji}(ω)=0\mathop {\mu_{A_{j}}} \limits_{\left \{ j \neq i \right \}}(\omega) = 0. 展開 ξ(ω)\xi(\omega), 可得 ξ(ω)=x1μA1(ω)+x2μA2(ω)+...+    xi1μAi1(ω)+xiμAi(ω)+xi+1μAi+1(ω)+...+    xkμAk(ω).\displaystyle {\begin {aligned} \xi(\omega) &= x_{1}\mu_{A_{1}}(\omega) + x_{2}\mu_{A_{2}}(\omega) + ... + \\ &\ \ \ \ x_{i - 1}\mu_{A_{i - 1}}(\omega) + x_{i}\mu_{A_{i}}(\omega) + x_{i + 1}\mu_{A_{i + 1}}(\omega) + ... + \\ &\ \ \ \ x_{k}\mu_{A_{k}}(\omega). \end {aligned}} 根據說明, 我們可以得到 μA1(ω),μA2(ω),...,μAi1(ω),μAi+1(ω),...,μAk(ω)\mu_{A_{1}}(\omega), \mu_{A_{2}}(\omega), ..., \mu_{A_{i - 1}}(\omega), \mu_{A_{i + 1}}(\omega), ..., \mu_{A_{k}}(\omega) 都為零. 因此, 不論 x1,x2,...,xi1,xi+1,...,xkx_{1}, x_{2}, ..., x_{i - 1}, x_{i + 1}, ..., x_{k} 為何值, x1μA1(ω),x2μA2(ω),...,xi1μAi1(ω),xi+1μAi+1(ω),...,xkμAk(ω)\displaystyle {x_{1}\mu_{A_{1}}(\omega), x_{2}\mu_{A_{2}}(\omega), ..., x_{i - 1}\mu_{A_{i - 1}}(\omega), x_{i + 1}\mu_{A_{i + 1}}(\omega), ..., x_{k}\mu_{A_{k}}(\omega)} 都為零. 最終有 ξ(ω)=xiμAi(ω)=xi=i=1kxiμAi(ω).\displaystyle {\xi(\omega) = x_{i}\mu_{A_{i}}(\omega) = x_{i} = \sum \limits_{i = 1}^{k}x_{i}\mu_{A_{i}}(\omega)}.

\blacksquare

pi=P{ξ=xi},i=1,2,...,kp_{i} = \mathop {\mathbf {P}} \left \{ \xi = x_{i} \right \}, i = 1, 2, ..., k. 直觀上, 如果在 nn 次獨立重複試驗中觀測隨機變數 ξ\xi 的取值, 則取 xix_{i} 的值大致上應該出現 npinp_{i} 次. 考慮投擲 nn 次均勻硬幣, 則 p0=p1=12p_{0} = p_{1} = \frac {1}{2}. 其中, p0p_{0} 代表反面向上的機率, 而 p1p_{1} 表示正面向上的機率. 直觀上, 投擲 nn 次硬幣, 正面應該大致出現 n2\frac {n}{2} 次, 即 np1np_{1} 次. 因此, 根據 nn 次試驗的結果, 計算該隨機變數的平均值大致為 1n(np1x1+np2x2+...+npkxk)=i=1kpixi.\displaystyle {\frac {1}{n}(np_{1}x_{1} + np_{2}x_{2} + ... + np_{k}x_{k}) = \sum \limits_{i = 1}^{k}p_{i}x_{i}}.

定義 4. 實數 E(ξ)=i=1kxiP(Ai)\displaystyle {\mathop {\mathrm {E}}(\xi) = \sum \limits_{i = 1}^{k}x_{i}\mathop {\mathbf {P}}(A_{i})} 稱作隨機變數 ξ=i=1kxiμAi(ω)\xi = \sum \limits_{i = 1}^{k}x_{i}\mu_{A_{i}}(\omega)數學期望 (mathematical expectation) 或者平均值 (mean value), 簡稱期望 (expectation) 或者均值. 其中, Ai={ω:ξ(ω)=xi}A_{i} = \left \{ \omega : \xi(\omega) = x_{i} \right \} (i=1,2,,ki = 1, 2, …, k).

我們注意到, Pξ(xi)=P(Ai)P_{\xi}(x_{i}) = \mathop {\mathbf {P}}(A_{i}). 根據定義 4, 又有 E(ξ)=i=1kxiPξ(xi).\displaystyle {\mathop {\mathrm {E}}(\xi) = \sum \limits_{i = 1}^{k}x_{i}P_{\xi}(x_{i})}. 另外, 我們記 ΔFξ(x)=Fξ(x)Fξ(x)\Delta F_{\xi}(x) = F_{\xi}(x) - F_{\xi}(x^{-}), 根據定義 3, 我們可得 Pξ(xi)=ΔFξ(xi)P_{\xi}(x_{i}) = \Delta F_{\xi}(x_{i}), 從而有 E(ξ)=i=1kxiΔFξ(xi).\displaystyle {\mathop {\mathrm {E}}(\xi) = \sum \limits_{i = 1}^{k}x_{i}\Delta F_{\xi}(x_{i})}.

有時, 隨機變數 ξ\xi 的值域中可能出現相同的值, 即 xi=xjx_{i} = x_{j}iji \neq j 的情形. 此時, 我們可以將隨機變數表示為 ξ(ω)=j=1lxjμBj(ω).\displaystyle {\xi(\omega) = \sum \limits_{j = 1}^{l}x_{j}'\mu_{B_{j}}(\omega)}. 其中, B1+B2+...Bl=ΩB_{1} + B_{2} + ... B_{l} = \Omega, xjx_{j} 之中可能出現相同的值, j=1,2,...,lj = 1, 2, ..., l. 但之前, 我們所討論的隨機變數的值域是一個集合, 裡面不能存在相同的元素. 這時, 我們仍然可以按照上式計算期望, 而並不需要將其變換為所有的 xix_{i} 值兩兩不等的 ξ(ω)=i=1kxiμAi(ω).\displaystyle {\xi(\omega) = \sum \limits_{i = 1}^{k}x_{i}\mu_{A_{i}}(\omega)}. 其中, i=1,2,,li = 1, 2, …, l.

事實上, 根據 {j:xj=xi}xjP(Bj)=xi{j:xj=xi}P(Bj)=xiP(Ai),\displaystyle {\sum \limits_{\left \{ j : x_{j}' = x_{i} \right \}}x_{j}'\mathop {\mathbf {P}}(B_{j}) = x_{i}\sum \limits_{\left \{ j : x_{j}' = x_{i} \right \}}\mathop {\mathbf {P}}(B_{j}) = x_{i}\mathop {\mathbf {P}}(A_{i})}, 於是有 j=1lxjP(Bj)=i=1kxiP(Ai).\displaystyle {\sum \limits_{j = 1}^{l}x_{j}\mathop {\mathbf {P}}(B_{j}) = \sum \limits_{i = 1}^{k}x_{i}\mathop {\mathbf {P}}(A_{i})}.

ξ\xiη\eta 為隨機變數, 則期望有以下基本性質 :

  1. ξ0\xi \geq 0, 則 E(ξ)0\mathop {\mathrm {E}}(\xi) \geq 0;
  2. E(aξ+bη)=aE(ξ)+bE(η)\mathop {\mathrm {E}}(a\xi + b\eta) = a\mathop {\mathrm {E}}(\xi) + b\mathop {\mathrm {E}}(\eta). 其中, aabb 是常數;
  3. ξη\xi \geq \eta, 則 E(ξ)E(η)\mathop {\mathrm {E}}(\xi) \geq \mathop {\mathrm {E}}(\eta);
  4. E(ξ)E(ξ)\left | \mathop {\mathrm {E}}(\xi) \right | \leq \mathop {\mathrm {E}}(\left | \xi \right |);
  5. ξ\xiη\eta 獨立, 則 E(ξη)=E(ξ)E(η)\mathop {\mathrm {E}}(\xi\eta) = \mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta);
  6. E2(ξη)E(ξ2)E(η2)\mathop {\mathrm {E}}^{2}(\left | \xi\eta \right |) \leq \mathop {\mathrm {E}}(\xi^{2})\mathop {\mathrm {E}}(\eta^{2}), 這是 Cauchy-Schwarz 不等式的機率形式;
  7. ξ=μA(ω)\xi = \mu_{A}(\omega), 則 E(ξ)=P(A)\mathop {\mathrm {E}}(\xi) = \mathop {\mathbf {P}}(A);
  8. cc 為常數, 則 E(c)=c\mathop {\mathrm {E}}(c) = c.
證明證明 :

根據期望的定義, E(ξ)=i=1kxiP(Ai)\mathop {\mathrm {E}}(\xi) = \sum \limits_{i = 1}^{k}x_{i}\mathop {\mathbf {P}}(A_{i}), 由於 0P(Ai)10 \leq \mathop {\mathbf {P}}(A_{i}) \leq 1, 故當 ξ0\xi \geq 0 時, 必有 xi0x_{i} \geq 0. 其中, i=1,2,...,ki = 1, 2, ..., k. 於是 E(ξ)0\mathop {\mathrm {E}}(\xi) \geq 0.

(1) \square

ξ=ixiμAi(ω)\xi = \sum \limits_{i}x_{i}\mu_{A_{i}}(\omega)η=jyjμAj(ω)\eta = \sum \limits_{j}y_{j}\mu_{A_{j}}(\omega), 則 aξ+bη=aixiμAi(ω)+bjyjμAj(ω).\displaystyle {a\xi + b\eta = a\sum \limits_{i}x_{i}\mu_{A_{i}}(\omega) + b\sum \limits_{j}y_{j}\mu_{A_{j}}(\omega)}. 由於 Ai=AiΩ=AijBjA_{i} = A_{i} \cup \Omega = A_{i} \bigcup \limits_{j} B_{j}Bj=BjiAiB_{j} = B_{j} \bigcup \limits_{i} A_{i}, 故有 aξ+bη=ai,jxiμAiBj(ω)+bi,jyjμAiBj(ω)=i,jaxiμAiBj(ω)+i,jbyjμAiBj(ω)=i,j(axi+byj)μAiBj(ω).\displaystyle {\begin {aligned} a\xi + b\eta &= a\sum \limits_{i, j}x_{i}\mu_{A_{i}B_{j}}(\omega) + b\sum \limits_{i, j}y_{j}\mu_{A_{i}B_{j}}(\omega) \\ &= \sum \limits_{i, j}ax_{i}\mu_{A_{i}B_{j}}(\omega) + \sum \limits_{i, j}by_{j}\mu_{A_{i}B_{j}}(\omega) \\ &= \sum \limits_{i, j}(ax_{i} + by_{j})\mu_{A_{i}B_{j}}(\omega). \end {aligned}} 因此, 根據定義 4E(aξ+bη)=i,j(axi+byj)P(AiBj)=iaxiP(Ai)+jbyjP(Bj)=aixiP(Ai)+bjyjP(Bj)=aE(ξ)+bE(η).\displaystyle {\begin {aligned} \mathop {\mathrm {E}}(a\xi + b\eta) &= \sum \limits_{i, j}(ax_{i} + by_{j})\mathop {\mathbf {P}}(A_{i}B_{j}) \\ &= \sum \limits_{i}ax_{i}\mathop {\mathbf {P}}(A_{i}) + \sum \limits_{j}by_{j}\mathop {\mathbf {P}}(B_{j}) \\ &= a\sum \limits_{i}x_{i}\mathop {\mathbf {P}}(A_{i}) + b\sum \limits_{j}y_{j}\mathop {\mathbf {P}}(B_{j}) \\ &= a\mathop {\mathrm {E}}(\xi) + b\mathop {\mathrm {E}}(\eta). \end {aligned}}

(2) \square

性質 2 可知, E(ξ)E(η)=E(ξη).\displaystyle {\mathop {\mathrm {E}}(\xi) - \mathop {\mathrm {E}}(\eta) = \mathop {\mathrm {E}}(\xi - \eta)}. 由於 ξη\xi \geq \eta, 結合性質 1, 於是有 E(ξ)E(η).\displaystyle {\mathop {\mathrm {E}}(\xi) \geq \mathop {\mathrm {E}}(\eta)}.

(3) \square

根據絕對值不等式 (《【數學分析】實數——實數的四則運算》定理 3), 我們可以得到 E(ξ)=ixiP(Ai)ixiP(Ai)=E(ξ).\displaystyle {\left | \mathop {\mathrm {E}}(\xi) \right | = \left |\sum \limits_{i}x_{i}\mathop {\mathbf {P}}(A_{i}) \right | \leq \sum \limits_{i}\left | x_{i} \right |\mathop {\mathbf {P}}(A_{i}) = \mathop {\mathrm {E}}(\left | \xi \right |)}.

(4) \square

ξ=ixiμAi(ω)\xi = \sum \limits_{i}x_{i}\mu_{A_{i}}(\omega)η=jyjμAj(ω)\eta = \sum \limits_{j}y_{j}\mu_{A_{j}}(\omega), 則 E(ξη)=E(ixiμAi(ω)jyjμAj(ω))=E(ijxiyjμAiBj(ω))=i,jxiyjP(AiBj).\displaystyle {\begin {aligned} \mathop {\mathrm {E}}(\xi\eta) &= \mathop {\mathrm {E}} \left (\sum \limits_{i}x_{i}\mu_{A_{i}}(\omega)\sum \limits_{j}y_{j}\mu_{A_{j}}(\omega) \right ) \\ &= \mathop {\mathrm {E}} \left (\sum \limits_{i}\sum \limits_{j}x_{i}y_{j}\mu_{A_{i}B_{j}}(\omega) \right ) \\ &= \sum \limits_{i, j}x_{i}y_{j}\mathop {\mathbf {P}}(A_{i}B_{j}). \end {aligned}} 由於隨機變數 ξ\xiη\eta 獨立, 故事件 Ai={ω:ξ(ω)=xi}A_{i} = \left \{ \omega : \xi(\omega) = x_{i} \right \}Bj={ω:η(ω)=yj}B_{j} = \left \{ \omega : \eta(\omega) = y_{j} \right \} 相互獨立, 於是 E(ξη)=i,jxiyjP(Ai)P(Bj)=ixiP(Ai)jyjP(Bj)=E(ξ)E(η).\displaystyle {\begin {aligned} \mathop {\mathrm {E}}(\xi\eta) &= \sum \limits_{i, j}x_{i}y_{j}\mathop {\mathbf {P}}(A_{i})\mathop {\mathbf {P}}(B_{j}) \\ &= \sum \limits_{i}x_{i}\mathop {\mathbf {P}}(A_{i})\sum \limits_{j}y_{j}\mathop {\mathbf {P}}(B_{j}) \\ &= \mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta). \end {aligned}}

(5) \square

對於 ξ=ixiμAi(ω),η=jyjμAj(ω)\xi = \sum \limits_{i}x_{i}\mu_{A_{i}}(\omega), \eta = \sum \limits_{j}y_{j}\mu_{A_{j}}(\omega), 我們注意到 ξ2=ixi2μAi(ω),η2=jyjμBj(ω).\displaystyle {\xi^{2} = \sum \limits_{i}x_{i}^{2}\mu_{A_{i}}(\omega), \eta^{2} = \sum \limits_{j}y_{j}\mu_{B_{j}}(\omega)}. 因此根據期望的定義, 有 E(ξ2)=ixi2P(Ai),E(η2)=jyj2P(Bj).\displaystyle {\mathop {\mathrm {E}}(\xi^{2}) = \sum \limits_{i}x_{i}^{2}\mathop {\mathbf {P}}(A_{i}), \mathop {\mathrm {E}}(\eta^{2}) = \sum \limits_{j}y_{j}^{2}\mathop {\mathbf {P}}(B_{j})}.E(ξ2)>0\mathop {\mathrm {E}}(\xi^{2}) > 0E(η2)>0\mathop {\mathrm {E}}(\eta^{2}) > 0, 記 ξ~=ξE(ξ2),η~=ηE(η2),\displaystyle {\widetilde {\xi} = \frac {\xi}{\sqrt {\mathop {\mathrm {E}}(\xi^{2})}}, \widetilde {\eta} = \frac {\eta}{\sqrt {\mathop {\mathrm {E}}(\eta^{2})}}}, 於是, E(ξ~2+η~2)=ξ2E(ξ2)+η2E(η2),2ξ~η~=2ξηE(ξ2)E(η2).\displaystyle {\mathop {\mathrm {E}} \left ({\widetilde {\xi}}^{2} + {\widetilde {\eta}}^{2} \right ) = \frac {\xi^{2}}{\mathop {\mathrm {E}}(\xi^{2})} + \frac {\eta^{2}}{\mathop {\mathrm {E}}(\eta^{2})}, 2 \left |\widetilde {\xi}\widetilde {\eta} \right | = \frac {2|\xi\eta|}{\sqrt {\mathop {\mathrm {E}}(\xi^{2})\mathop {\mathrm {E}}(\eta^{2})}}}. 由均值不等式可知, 2ξ~η~ξ~2+η~22|\widetilde {\xi}\widetilde {\eta}| \leq {\widetilde {\xi}}^{2} + {\widetilde {\eta}}^{2}, 可見 2E(ξ~η~)E(ξ~2)+E(η~2)=2.\displaystyle {2\mathop {\mathrm {E}} \left ( \left | \widetilde {\xi}\widetilde {\eta} \right | \right ) \leq \mathop {\mathrm {E}}(\widetilde {\xi}^{2}) + \mathop {\mathrm {E}}(\widetilde {\eta}^{2}) = 2}. 因此, E(ξ~η~)1\mathop {\mathrm {E}} \left ( \left |\widetilde {\xi}\widetilde {\eta} \right | \right ) \leq 1E2(ξη)E(ξ2)E(η2)\mathop {\mathrm {E}}^{2}(\xi\eta) \leq \mathop {\mathrm {E}}(\xi^{2})\mathop {\mathrm {E}}(\eta^{2}). 若 E(ξ2)=0\mathop {\mathrm {E}}(\xi^{2}) = 0, 則 ixi2P{Ai}=0.\displaystyle {\sum \limits_{i}x_{i}^{2}\mathop {\mathbf {P}} \left \{ A_{i} \right \} = 0}. 從而 00 是隨機變數 ξ\xi 的可能取值, 並且 P{ω:ξ(ω)=0}=1.\displaystyle {\mathop {\mathbf {P}} \left \{ \omega : \xi(\omega) = 0 \right \} = 1}. 於是, 不論 E(ξ2)=0\mathop {\mathrm {E}}(\xi^{2}) = 0 或者 E(η2)=0\mathop {\mathrm {E}}(\eta^{2}) = 0, 顯然有 E(ξη)=0\mathop {\mathrm {E}}(\left | \xi\eta \right |) = 0. 此時有 E2(ξη)E(ξ2)E(η2)\displaystyle {\mathop {\mathrm {E}}^{2}(\xi\eta) \leq \mathop {\mathrm {E}}(\xi^{2})\mathop {\mathrm {E}}(\eta^{2})} 成立.

綜上所述, E2(ξη)=E(ξ2)E(η2)\mathop {\mathrm {E}}^{2}(\xi\eta) = \mathop {\mathrm {E}}(\xi^{2})\mathop {\mathrm {E}}(\eta^{2}).

(6) \square

根據隨機變數 ξ\xi 的性質 : ξ=ixiμAi(ω)=μAi(ω),\displaystyle {\xi = \sum \limits_{i}x_{i}\mu_{A_{i}}(\omega) = \mu_{A_{i}}(\omega)},xi=1x_{i} = 1, 於是 E(ξ)=ixiP(Ai)=iP(Ai)=P(A)\displaystyle {\mathop {\mathrm {E}}(\xi) = \sum \limits_{i}x_{i}\mathop {\mathbf {P}}(A_{i}) = \sum \limits_{i}\mathop {\mathbf {P}}(A_{i}) = \mathop {\mathbf {P}}(A)}

(7) \square

由於 cc 有且唯有一種取值, 故 P(c)=1\mathop {\mathbf {P}}(c) = 1. 根據期望的定義, 有 E(c)=ixiP(Ai)=cP(c)=c.\displaystyle {\mathop {\mathrm {E}}(c) = \sum \limits_{i}x_{i}\mathop {\mathbf {P}}(A_{i}) = c \cdot \mathop {\mathbf {P}}(c) = c}.

(8) \square

\blacksquare

推論 1. 若隨機變數 ξ1,ξ2,...,ξr\xi_{1}, \xi_{2}, ..., \xi_{r} 獨立, 則有 E(ξ1ξ2...ξr)=E(ξ1)E(ξ2)...E(ξr).\displaystyle {\mathop {\mathrm {E}}(\xi_{1}\xi_{2}...\xi_{r}) = \mathop {\mathrm {E}}(\xi_{1})\mathop {\mathrm {E}}(\xi_{2})...\mathop {\mathrm {E}}(\xi_{r})}.

證明證明 :

我們使用歸納法進行證明.

r=1r = 1 時, 顯然有 E(ξ1)=E(ξ1)\mathop {\mathrm {E}}(\xi_{1}) = \mathop {\mathrm {E}}(\xi_{1}); 當 r=2r = 2 時, 由期望的性質可知, E(ξ1ξ2)=E(ξ1)E(ξ2)\mathop {\mathrm {E}}(\xi_{1}\xi_{2}) = \mathop {\mathrm {E}}(\xi_{1})\mathop {\mathrm {E}}(\xi_{2}).

不妨假設當 r<kr < k 時, 有 E(ξ1ξ2...ξr)=E(ξ1)E(ξ2)...E(ξr)\mathop {\mathrm {E}}(\xi_{1}\xi_{2}...\xi_{r}) = \mathop {\mathrm {E}}(\xi_{1})\mathop {\mathrm {E}}(\xi_{2})...\mathop {\mathrm {E}}(\xi_{r}) 成立.

r=kr = k 時, E(ξ1ξ2...ξk1ξk)=E((ξ1ξ2...ξk1)ξk)=E(ξ1ξ2...ξk1)E(ξk)=E(ξ1)E(ξ2)...E(ξk1)E(ξk).\displaystyle {\begin {aligned} \mathop {\mathrm {E}}(\xi_{1}\xi_{2}...\xi_{k - 1}\xi_{k}) &= \mathop {\mathrm {E}}((\xi_{1}\xi_{2}...\xi_{k - 1})\xi_{k}) \\ &= \mathop {\mathrm {E}}(\xi_{1}\xi_{2}...\xi_{k - 1})\mathop {\mathrm {E}}(\xi_{k}) \\ &= \mathop {\mathrm {E}}(\xi_{1})\mathop {\mathrm {E}}(\xi_{2})...\mathop {\mathrm {E}}(\xi_{k - 1})\mathop {\mathrm {E}}(\xi_{k}). \end {aligned}} 因此, 當 r=kr = k 時, E(ξ1ξ2...ξr)=E(ξ1)E(ξ2)...E(ξr)\mathop {\mathrm {E}}(\xi_{1}\xi_{2}...\xi_{r}) = \mathop {\mathrm {E}}(\xi_{1})\mathop {\mathrm {E}}(\xi_{2})...\mathop {\mathrm {E}}(\xi_{r}) 仍然成立.

綜上所述, 若隨機變數 ξ1,ξ2,...,ξr\xi_{1}, \xi_{2}, ..., \xi_{r} 獨立, 則有 E(ξ1ξ2...ξr)=E(ξ1)E(ξ2)...E(ξr).\displaystyle {\mathop {\mathrm {E}}(\xi_{1}\xi_{2}...\xi_{r}) = \mathop {\mathrm {E}}(\xi_{1})\mathop {\mathrm {E}}(\xi_{2})...\mathop {\mathrm {E}}(\xi_{r})}.

\blacksquare

例題 4.ξ\xi 是 Bernoulli 隨機變數, 以機率 ppqq0011, 則 E(ξ)=1×P{ξ=1}+0×P{ξ=0}=P{ξ=1}=p.\displaystyle {\mathop {\mathrm {E}}(\xi) = 1 \times \mathop {\mathbf {P}} \left \{ \xi = 1 \right \} + 0 \times \mathop {\mathbf {P}} \left \{ \xi = 0 \right \} = \mathop {\mathbf {P}} \left \{ \xi = 1 \right \} = p}.

例題 5.ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n}nn 個 Bernoulli 隨機變數, 以機率 P{ξi=1}=p\mathop {\mathbf {P}} \left \{ \xi_{i} = 1 \right \} = pP{ξi=0}=q\mathop {\mathbf {P}} \left \{ \xi_{i} = 0 \right \} = qp+q=1p + q = 11100 為值. 其中, i=1,2,...,ni = 1, 2, ..., n. 那麼對於 Sn=ξ1+ξ2+...+ξnS_{n} = \xi_{1} + \xi_{2} + ... + \xi_{n} 的期望為 E(Sn)=E(ξ1+ξ2+...ξn)=E(ξ1)+E(ξ2)+...+E(ξn)=(1×p+0×q)+(1×p+0×q)+...+(1×p+0×q)n 個=np.\displaystyle {\begin {aligned} \mathop {\mathrm {E}}(S_{n}) &= \mathop {\mathrm {E}}(\xi_{1} + \xi_{2} + ... \xi_{n}) = \mathop {\mathrm {E}}(\xi_{1}) + \mathop {\mathrm {E}}(\xi_{2}) + ... + \mathop {\mathrm {E}}(\xi_{n}) \\ &= \underbrace {(1 \times p + 0 \times q) + (1 \times p + 0 \times q) + ... + (1 \times p + 0 \times q)}_{n \text { 個}} \\ &= np. \end {aligned}}

例題 5'.ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n}nn 個 Bernoulli 隨機變數, 以機率 P{ξi=1}=p\mathop {\mathbf {P}} \left \{ \xi_{i} = 1 \right \} = pP{ξi=0}=q\mathop {\mathbf {P}} \left \{ \xi_{i} = 0 \right \} = qp+q=1p + q = 11100 為值. 其中, i=1,2,...,ni = 1, 2, ..., n. 求 Sn=ξ1+ξ2+...+ξnS_{n} = \xi_{1} + \xi_{2} + ... + \xi_{n}.

:

ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n}nn 個獨立的 Bernoulli 隨機變數, 則 E(Sn)\mathop {\mathrm {E}}(S_{n}) 仍保持不變. 此時, 由二項分佈可知 P{Sn=k}=(kn)pkqnk.\displaystyle {\mathop {\mathbf {P}} \left \{ S_{n} = k \right \} = \binom {k}{n}p^{k}q^{n - k}}. 其中, k=0,1,2,,nk = 0, 1, 2, …, n. 於是, E(Sn)=k=0nkP{Sn=k}=k=0nk(kn)pkqnk=k=0nkn!k!(nk)!pkqnk=0×n!0!(n0)!p0qn+k=1nkn!k!(nk)!pkqnk=k=1nkn!k!(nk)!pkqnk=k=1nkn(n1)!k!(nk+11)!ppk1qnk+11=k=1nn(n1)!(k1)!((n1)(k1))!ppk1q(n1)(k1)=npk=1n(n1)!(k1)!((n1)(k1))!pk1q(n1)(k1)=npl=1n1(n1)!l!((n1)l)!plq(n1)l (令 l=k1)=np.\displaystyle {\begin {aligned} \mathop {\mathrm {E}}(S_{n}) &= \sum \limits_{k = 0}^{n}k\mathop {\mathbf {P}} \left \{ S_{n} = k \right \} \\ &= \sum \limits_{k = 0}^{n}k\binom {k}{n}p^{k}q^{n - k} \\ &= \sum \limits_{k = 0}^{n}k \cdot \frac {n!}{k!(n - k)!}p^{k}q^{n - k} \\ &= \frac {0 \times n!}{0!(n - 0)!}p^{0}q^{n} + \sum \limits_{k = 1}^{n}k \frac {n!}{k!(n - k)!}p^{k}q^{n - k} \\ &= \sum \limits_{k = 1}^{n}k \frac {n!}{k!(n - k)!}p^{k}q^{n - k} \\ &= \sum \limits_{k = 1}^{n}k\frac {n(n - 1)!}{k!(n - k + 1 - 1)!}p \cdot p^{k - 1}q^{n - k + 1 -1} \\ &= \sum \limits_{k = 1}^{n}\frac {n(n - 1)!}{(k - 1)!((n - 1) - (k - 1))!}p \cdot p^{k - 1}q^{(n - 1) - (k - 1)} \\ &= np\sum \limits_{k = 1}^{n}\frac {(n - 1)!}{(k - 1)!((n - 1) - (k - 1))!}p^{k - 1}q^{(n - 1) - (k - 1)} \\ &= np\sum \limits_{l = 1}^{n - 1}\frac {(n - 1)!}{l!((n - 1) - l)!}p^{l}q^{(n - 1) - l} \ (\text {令 } l = k - 1) \\ &= np. \end {aligned}}

\blacksquare

ξ=ixiμAi(ω)\xi = \sum \limits_{i}x_{i}\mu_{A_{i}}(\omega), 其中, Ai={ω:ξ(ω)=xi}A_{i} = \left \{ \omega : \xi(\omega) = x_{i} \right \}, 從而 φ=φ(ξ(ω))\varphi = \varphi(\xi(\omega))ξ(ω)\xi(\omega) 的某一函數. 如果 Bj={ω:φ(ξ(ω))=yj}B_{j} = \left \{ \omega : \varphi(\xi(\omega)) = y_{j} \right \}, 則 φ(ξ(ω))=jyjμBj(ω).\displaystyle {\varphi(\xi(\omega)) = \sum \limits_{j}y_{j}\mu_{B_{j}}(\omega)}. 從而有 E(φ)=jyjP(Bj)=jyjPφ(yj).\displaystyle {\mathop {\mathrm {E}}(\varphi) = \sum \limits_{j}y_{j}\mathop {\mathbf {P}}(B_{j}) = \sum \limits_{j}y_{j}P_{\varphi}(y_{j})}. 顯然, φ(ξ(ω))=iφ(xi)μAi(ω).\displaystyle {\varphi(\xi(\omega)) = \sum \limits_{i}\varphi(x_{i})\mu_{A_{i}}(\omega)}. 於是, 為了求 φ=φ(ξ(ω))\varphi = \varphi(\xi(\omega)) 的期望值, 既可以使用 E(φ)=jyjP(Bj)=jyjPφ(yj)\mathop {\mathrm {E}}(\varphi) = \sum \limits_{j}y_{j}\mathop {\mathbf {P}}(B_{j}) = \sum \limits_{j}y_{j}P_{\varphi}(y_{j}), 也可以使用 E(φ(ξ(ω)))=iφ(xi)Pξ(xi).\displaystyle {\mathop {\mathrm {E}}(\varphi(\xi(\omega))) = \sum \limits_{i}\varphi(x_{i})P_{\xi}(x_{i})}. 我們稱 E(φ(ξ(ω)))\mathop {\mathrm {E}}(\varphi(\xi(\omega))) 為隨機變數函數的數學期望.

定義 5.Var(ξ)=E((ξE(ξ))2)\displaystyle {\mathop {\mathrm {Var}}(\xi) = \mathop {\mathrm {E}} \left ((\xi - \mathop {\mathrm {E}}(\xi))^{2} \right )} 為隨機變數 ξ\xi方差 (variance).

定義 6.σ=Var(ξ)\displaystyle {\sigma = \sqrt {\mathop {\mathrm {Var}}(\xi)}} 為隨機變數 ξ\xi標準差 (standard deviation).

隨機變數 ξ\xi 的方差和標準差表徵了 ξ\xi 的取值的散佈程度.

由於 E((ξE(ξ))2)=E(ξ22ξE(ξ)+E2(ξ))=E(ξ2)E(2ξE(ξ))+E(E2(ξ))=E(ξ2)2E(ξ)E(ξ)+E2(ξ)=E(ξ2)2E2(ξ)+E2(ξ)=E(ξ2)E2(ξ)\displaystyle {\begin {aligned} \mathop {\mathrm {E}} \left ((\xi - \mathop {\mathrm {E}}(\xi))^{2} \right) &= \mathop {\mathrm {E}} \left (\xi^{2} - 2\xi \mathop {\mathrm {E}}(\xi) + \mathop {\mathrm {E}}^{2}(\xi) \right ) \\ &= \mathop {\mathrm {E}}(\xi^{2}) - \mathop {\mathrm {E}}(2\xi \mathop {\mathrm {E}}(\xi)) + \mathop {\mathrm {E}} \left (\mathop {\mathrm {E}}^{2}(\xi) \right ) \\ &= \mathop {\mathrm {E}}(\xi^{2}) - 2\mathop {\mathrm {E}}(\xi) \cdot \mathop {\mathrm {E}}(\xi) + \mathop {\mathrm {E}}^{2}(\xi) \\ &= \mathop {\mathrm {E}}(\xi^{2}) - 2\mathop {\mathrm {E}}^{2}(\xi) + \mathop {\mathrm {E}}^{2}(\xi) \\ &= \mathop {\mathrm {E}}(\xi^{2}) - \mathop {\mathrm {E}}^{2}(\xi) \end {aligned}} 可見, Var(ξ)=E(ξ2)E2(ξ)\mathop {\mathrm {Var}}(\xi) = \mathop {\mathrm {E}}(\xi^{2}) - \mathop {\mathrm {E}}^{2}(\xi). 上面推導過程中, 由於 E(ξ)\mathop {\mathrm {E}}(\xi) 是常數, 因此根據期望的性質 8E(E(ξ))=E(ξ)\mathop {\mathrm {E}}(\mathop {\mathrm {E}}(\xi)) = \mathop {\mathrm {E}}(\xi).

ξ\xi 為隨機變數, aabb 均為常數, 可導出方差如下性質 :

  1. Var(ξ)0\mathop {\mathrm {Var}}(\xi) \geq 0;
  2. Var(a+bξ)=b2Var(ξ)\mathop {\mathrm {Var}}(a + b\xi) = b^{2}\mathop {\mathrm {Var}}(\xi);
  3. Var(a)=0\mathop {\mathrm {Var}}(a) = 0;
  4. Var(bξ)=b2Var(ξ)\mathop {\mathrm {Var}}(b\xi) = b^{2}\mathop {\mathrm {Var}}(\xi).
證明證明 :

定義 5 可知, Var(ξ)=E((ξE(ξ))2)\mathop {\mathrm {Var}}(\xi) = \mathop {\mathrm {E}} \left ((\xi - \mathop {\mathrm {E}}(\xi))^{2} \right ). 而 (ξE(ξ))20(\xi - \mathop {\mathrm {E}}(\xi))^{2} \geq 0, 由期望的性質可知, Var(ξ)0\mathop {\mathrm {Var}}(\xi) \geq 0.

(1) \square

根據定義 5 , 我們將其展開 : Var(a+bξ)=E((a+bξ)2)E2(a+bξ)=E(a2+2abξ+b2ξ2)E(a+bξ)E(a+bξ)=E(a2)+E(2abξ)+E(b2ξ2)(E2(a)+E2(bξ)+2E(a)E(bξ))=a2+2abE(ξ)+b2E(ξ2)a2b2E2(ξ)2abE(ξ)=b2E(ξ2)b2E2(ξ)=b2(E(ξ2)E2(ξ))=b2Var(ξ).\displaystyle {\begin {aligned} \mathop {\mathrm {Var}}(a + b\xi) &= \mathop {\mathrm {E}} \left ((a + b\xi)^{2} \right ) - \mathop {\mathrm {E}}^{2}(a + b\xi) \\ &= \mathop {\mathrm {E}}(a^{2} + 2ab\xi + b^{2}\xi^{2}) - \mathop {\mathrm {E}}(a + b\xi)\mathop {\mathrm {E}}(a + b\xi) \\ &= \mathop {\mathrm {E}}(a^{2}) + \mathop {\mathrm {E}}(2ab\xi) + \mathop {\mathrm {E}}(b^{2}\xi^{2}) - \left ( \mathop {\mathrm {E}}^{2}(a) + \mathop {\mathrm {E}}^{2}(b\xi) + 2\mathop {\mathrm {E}}(a)\mathop {\mathrm {E}}(b\xi) \right ) \\ &= a^{2} + 2ab\mathop {\mathrm {E}}(\xi) + b^{2}\mathop {\mathrm {E}}(\xi^{2}) - a^{2} - b^{2}\mathop {\mathrm {E}}^{2}(\xi) - 2ab\mathop {\mathrm {E}}(\xi) \\ &= b^{2}\mathop {\mathrm {E}}(\xi^{2}) - b^{2}\mathop {\mathrm {E}}^{2}(\xi) \\ &= b^{2}\left ( \mathop {\mathrm {E}}(\xi^{2}) - \mathop {\mathrm {E}}^{2}(\xi) \right ) \\ &= b^{2}\mathop {\mathrm {Var}}(\xi). \end {aligned}}

(2) \square

根據定義 5 , 我們將其展開 : Var(a)=E(a2)E2(a)=a2a2=0.\displaystyle {\mathop {\mathrm {Var}}(a) = \mathop {\mathrm {E}}(a^{2}) - \mathop {\mathrm {E}}^{2}(a) = a^{2} - a^{2} = 0}.

(3) \square

根據定義 5 , 我們將其展開 : Var(bξ)=E(b2ξ2)E2(bξ)=b2E(ξ2)b2E2(ξ)=b2(E(ξ2)E2(ξ))=b2Var(ξ).\displaystyle {\begin {aligned} \mathop {\mathrm {Var}}(b\xi) &= \mathop {\mathrm {E}}(b^{2}\xi^{2}) - \mathop {\mathrm {E}}^{2}(b\xi) \\ &= b^{2}\mathop {\mathrm {E}}(\xi^{2}) - b^{2}\mathop {\mathrm {E}}^{2}(\xi) \\ &= b^{2} \left ( \mathop {\mathrm {E}}(\xi^{2}) - \mathop {\mathrm {E}}^{2}(\xi) \right ) \\ &= b^{2}\mathop {\mathrm {Var}}(\xi). \end {aligned}}

(3) \square

\blacksquare

對於兩個隨機變數 ξ\xiη\eta, 有 Var(ξ+η)=E((ξ+η)2)+E2(ξ+η)=E(ξ2+2ξη+η2)(E(ξ)E(η))2=E(ξ2)+2E(ξ+η)+E(η2)E2(ξ)2E(ξ)E(η)+E2(η)=Var(ξ)+Var(η)+2E(ξη)2E(ξ)E(η).\displaystyle {\begin {aligned} \mathop {\mathrm {Var}}(\xi + \eta) &= \mathop {\mathrm {E}} \left ((\xi + \eta)^{2} \right ) + \mathop {\mathrm {E}}^{2}(\xi + \eta) \\ &= \mathop {\mathrm {E}}(\xi^{2} + 2\xi\eta + \eta^{2}) - (\mathop {\mathrm {E}}(\xi) - \mathop {\mathrm {E}}(\eta))^{2} \\ &= \mathop {\mathrm {E}}(\xi^{2}) + 2\mathop {\mathrm {E}}(\xi + \eta) + \mathop {\mathrm {E}}(\eta^{2}) - \mathop {\mathrm {E}}^{2}(\xi) - 2\mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta) + \mathop {\mathrm {E}}^{2}(\eta) \\ &= \mathop {\mathrm {Var}}(\xi) + \mathop {\mathrm {Var}}(\eta) + 2\mathop {\mathrm {E}}(\xi\eta) - 2\mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta). \end {aligned}}E((ξE(ξ))+(ηE(η)))=E(ξ2+E2(ξ)+η2+E2(η)2ξE(ξ)+2ξη     2ξE(η)2ηE(ξ)+2E(η)E(η)2ηE(η))=E(ξ2)+E2(ξ)+E(η2)+E2(η)2E2(ξ)+2E(ξη)     2E(η)E(ξ)2E(η)E(ξ)+2E(ξ)E(η)2E2(η)=Var(ξ)+Var(η)+2E(ξη)2E(η)E(ξ),\displaystyle {\begin {aligned} \mathop {\mathrm {E}} \big ((\xi - \mathop {\mathrm {E}}(\xi)) + (\eta - \mathop {\mathrm {E}}(\eta)) \big ) &= \mathop {\mathrm {E}} \big ( \xi^{2} + \mathop {\mathrm {E}}^{2}(\xi) + \eta^{2}+ \mathop {\mathrm {E}}^{2}(\eta) - 2\xi \mathop {\mathrm {E}}(\xi) + 2\xi\eta - \\ &\ \ \ \ \ 2\xi \mathop {\mathrm {E}}(\eta) - 2\eta \mathop {\mathrm {E}}(\xi) + 2\mathop {\mathrm {E}}(\eta)\mathop {\mathrm {E}}(\eta) - 2\eta \mathop {\mathrm {E}}(\eta) \big ) \\ &= \mathop {\mathrm {E}}(\xi^{2}) + \mathop {\mathrm {E}}^{2}(\xi) + \mathop {\mathrm {E}}(\eta^{2}) + \mathop {\mathrm {E}}^{2}(\eta) - 2\mathop {\mathrm {E}}^{2}(\xi) + 2\mathop {\mathrm {E}}(\xi\eta) - \\ &\ \ \ \ \ 2\mathop {\mathrm {E}}(\eta)\mathop {\mathrm {E}}(\xi) - 2\mathop {\mathrm {E}}(\eta)\mathop {\mathrm {E}}(\xi) + 2\mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta) - 2\mathop {\mathrm {E}}^{2}(\eta) \\ &= \mathop {\mathrm {Var}}(\xi) + \mathop {\mathrm {Var}}(\eta) + 2\mathop {\mathrm {E}}(\xi\eta) - 2\mathop {\mathrm {E}}(\eta)\mathop {\mathrm {E}}(\xi), \end {aligned}} 因此, Var(ξ+η)=E(((ξE(ξ))+(ηE(η)))2)\mathop {\mathrm {Var}}(\xi + \eta) = \mathop {\mathrm {E}} \left ( \big ( (\xi - \mathop {\mathrm {E}}(\xi)) + (\eta - \mathop {\mathrm {E}}(\eta)) \big )^{2} \right ). 除此之外, 2E((ξE(ξ))(ηE(η)))=2E(ξηξE(η)ηE(ξ)+E(ξ)E(η))=2(E(ξη)E(ξ)E(η)E(η)E(ξ)+E(ξ)E(η))=2E(ξη)2E(ξ)E(η),\displaystyle {\begin {aligned} 2\mathop {\mathrm {E}} \big ( (\xi - \mathop {\mathrm {E}}(\xi))(\eta - \mathop {\mathrm {E}}(\eta)) \big ) &= 2\mathop {\mathrm {E}} \big ( \xi\eta - \xi \mathop {\mathrm {E}}(\eta) - \eta \mathop {\mathrm {E}}(\xi) + \mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta) \big ) \\ &= 2\big ( \mathop {\mathrm {E}}(\xi\eta) - \mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta) - \mathop {\mathrm {E}}(\eta)\mathop {\mathrm {E}}(\xi) + \mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta) \big ) \\ &= 2\mathop {\mathrm {E}}(\xi\eta) - 2\mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta), \end {aligned}} 故有 Var(ξ+η)=E((ξE(ξ))+(ηE(η)))=Var(ξ)+Var(η)2E((ξE(ξ))(ηE(η))).\displaystyle {\begin {aligned} \mathop {\mathrm {Var}}(\xi + \eta) &= E\big ( (\xi - \mathop {\mathrm {E}}(\xi)) + (\eta - \mathop {\mathrm {E}}(\eta)) \big ) \\ &= \mathop {\mathrm {Var}}(\xi) + \mathop {\mathrm {Var}}(\eta) - 2\mathop {\mathrm {E}} \big ( (\xi - \mathop {\mathrm {E}}(\xi))(\eta - \mathop {\mathrm {E}}(\eta)) \big ). \end {aligned}}

定義 7. 我們稱 Cov(ξ,η)=E((ξE(ξ))(ηE(η)))\displaystyle {\mathop {\mathrm {Cov}}(\xi, \eta) = \mathop {\mathrm {E}} \big ( (\xi - \mathop {\mathrm {E}}(\xi))(\eta - \mathop {\mathrm {E}}(\eta)) \big )} 為隨機變數 ξ\xiη\eta協方差 (covariance, 也稱共變異數).

定義 8.Var(ξ)0,Var(η)0\mathop {\mathrm {Var}}(\xi) \geq 0, \mathop {\mathrm {Var}}(\eta) \geq 0, 我們稱 ρ(ξ,η)=Cov(ξ,η)Var(ξ)Var(η)\displaystyle {\rho(\xi, \eta) = \frac {\mathop {\mathrm {Cov}}(\xi, \eta)}{\sqrt {\mathop {\mathrm {Var}}(\xi)\mathop {\mathrm {Var}}(\eta)}}} 為隨機變數 ξ\xiη\eta相關係數 (correlation coefficient).

定理 1.ρ(ξ,η)=±1\rho(\xi, \eta) = \pm 1, 則隨機變數 ξ\xiη\eta 線性相關, 即 η=aξ+b.\displaystyle {\eta = a\xi + b}. 其中, 當 ρ(ξ,η)=1\rho(\xi, \eta) = 1 時, a>0a > 0; 當 ρ(ξ,η)=1\rho(\xi, \eta) = -1 時, a<0a < 0, aabb 都為常數.

證明證明 :

ρ(ξ,η)=1\rho(\xi, \eta) = 1 時, 有 Cov(ξ,η)Var(ξ)Var(η)=E((ξE(ξ))(ηE(η)))E((ξE(ξ))2)E((ηE(η))2)=1.\displaystyle {\frac {\mathop {\mathrm {Cov}}(\xi, \eta)}{\sqrt {\mathop {\mathrm {Var}}(\xi)\mathop {\mathrm {Var}}(\eta)}} = \frac {\mathop {\mathrm {E}} \big ( (\xi - \mathop {\mathrm {E}}(\xi))(\eta - \mathop {\mathrm {E}}(\eta)) \big )}{\sqrt {\mathop {\mathrm {E}} \big ( (\xi - \mathop {\mathrm {E}}(\xi))^{2} \big )\mathop {\mathrm {E}} \big ( (\eta - \mathop {\mathrm {E}}(\eta))^{2} \big )}} = 1}. 記隨機變數 φ=ξE(ξ)\varphi = \xi - \mathop {\mathrm {E}}(\xi)ψ=ηE(η)\psi = \eta - \mathop {\mathrm {E}}(\eta), 由上式可知 E(φψ)=E(φ2)E(ψ2).\displaystyle {\mathop {\mathrm {E}}(\varphi\psi) = \sqrt {\mathop {\mathrm {E}}(\varphi^{2})\mathop {\mathrm {E}}(\psi^{2})}}. 兩邊平方可得 E2(φψ)=E(φ2)E(ψ2).\displaystyle {\mathop {\mathrm {E}}^{2}(\varphi\psi) = \mathop {\mathrm {E}}(\varphi^{2})\mathop {\mathrm {E}}(\psi^{2})}. 根據期望的性質 6, 有 E2(φψ)E(φ2)E(ψ2).\displaystyle {\mathop {\mathrm {E}}^{2}(\varphi\psi) \leq \mathop {\mathrm {E}}(\varphi^{2})\mathop {\mathrm {E}}(\psi^{2})}. 顯然, 要使得等號成立, 若且唯若隨機變數 φ\varphiψ\psi 線性相關, 即存在不為零的 k1k_{1}k2k_{2} 使得 k1φ+k2ψ=0.\displaystyle {k_{1}\varphi + k_{2}\psi = 0}.k=k1k2k = -\frac {k_{1}}{k_{2}}, 於是有 φ=kψ\varphi = k\psi. 那麼, 我們可以得到 E2(φψ)=E2(φkφ)=k2E2(φ2)\displaystyle {\mathop {\mathrm {E}}^{2}(\varphi\psi) = \mathop {\mathrm {E}}^{2}(\varphi \cdot k\varphi) = k^{2}\mathop {\mathrm {E}}^{2}(\varphi^{2})}E(φ2)E(ψ2)=E(φ2)E(k2φ2)=k2E2(φ2).\displaystyle {\mathop {\mathrm {E}}(\varphi^{2})\mathop {\mathrm {E}}(\psi^{2}) = \mathop {\mathrm {E}}(\varphi^{2})\mathop {\mathrm {E}}(k^{2}\varphi^{2}) = k^{2}\mathop {\mathrm {E}}^{2}(\varphi^{2})}. 因此, E2(φψ)=E(φ)E(ψ)\mathop {\mathrm {E}}^{2}(\varphi\psi) = \mathop {\mathrm {E}}(\varphi)\mathop {\mathrm {E}}(\psi). 此時, φ=ξE(ξ)=kψ=k(ηE(η)).\displaystyle {\varphi = \xi - \mathop {\mathrm {E}}(\xi) = k\psi = k(\eta - \mathop {\mathrm {E}}(\eta))}. 變換可得 η=1kξ+kE(η)+E(ξ)k.\displaystyle {\eta = \frac {1}{k}\xi + \frac {k\mathop {\mathrm {E}}(\eta) + \mathop {\mathrm {E}}(\xi)}{k}}.a=1k,b=kE(η)+E(ξ)ka = \frac {1}{k}, b = \frac {k\mathop {\mathrm {E}}(\eta) + \mathop {\mathrm {E}}(\xi)}{k}, 則 η=aξ+b.\displaystyle {\eta = a\xi + b}.ρ(ξ,η)=1\rho(\xi, \eta) = -1 時, 同樣有 η=aξ+b\eta = a\xi + b.

接下來證明當 ρ(ξ,η)=1\rho(\xi, \eta) = 1 時, a>0a > 0; 當 ρ(ξ,η)=1\rho(\xi, \eta) = -1 時, a<0a < 0. 當 ρ(ξ,η)=1\rho(\xi, \eta) = 1 時, 有 η=aξ+b\eta = a\xi + b. 則 ρ(ξ,η)=ρ(ξ,aξ+b)=Cov(ξ,aξ+b)Var(ξ)Var(aξ+b)=E(ξE(ξ))E(aξ+bE(aξ+b))aVar(ξ)=aa=1.\displaystyle {\begin {aligned} \rho(\xi, \eta) &= \rho(\xi, a\xi + b) = \frac {\mathop {\mathrm {Cov}}(\xi, a\xi + b)}{\sqrt {\mathop {\mathrm {Var}}(\xi)\mathop {\mathrm {Var}}(a\xi + b)}} \\ &= \frac {\mathop {\mathrm {E}}(\xi - \mathop {\mathrm {E}}(\xi))\mathop {\mathrm {E}}(a\xi + b - \mathop {\mathrm {E}}(a\xi + b))}{|a|\mathop {\mathrm {Var}}(\xi)} \\ &= \frac {a}{|a|} = 1. \end {aligned}} 故當 a>0a > 0 時, ρ(ξ,η)=1\rho(\xi, \eta) = 1. 對於 aa=1\frac {a}{|a|} = -1, 此時 a<0a < 0. 因此當 a<0a < 0 時, ρ(ξ,η)=1\rho(\xi, \eta) = -1.

綜上所述, 若 ρ(ξ,η)=±1\rho(\xi, \eta) = \pm 1, 則隨機變數 ξ\xiη\eta 線性相關, 即 η=aξ+b.\displaystyle {\eta = a\xi + b}. 其中, 當 ρ(ξ,η)=1\rho(\xi, \eta) = 1 時, a>0a > 0; 當 ρ(ξ,η)=1\rho(\xi, \eta) = -1 時, a<0a < 0, aabb 都為常數.

\blacksquare

顯然我們可以立即指出 : 若隨機變數 ξ\xiη\eta 相互獨立, 則隨機變數 ξE(ξ)\xi - \mathop {\mathrm {E}}(\xi)ηE(η)\eta - \mathop {\mathrm {E}}(\eta) 獨立, 於是 Cov(ξ,η)=E((ξE(ξ))(ηE(η)))=E(ξη)E(ξ)E(η)=0.\displaystyle {\mathop {\mathrm {Cov}}(\xi, \eta) = \mathop {\mathrm {E}} \big ( (\xi - \mathop {\mathrm {E}}(\xi))(\eta - \mathop {\mathrm {E}}(\eta)) \big ) = \mathop {\mathrm {E}}(\xi\eta) - \mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta) = 0}. 另外, 由定義 7 可知 Var(ξ+η)=Var(ξ)+Var(η)+2Cov(ξ,η)=Var(ξ)+Var(η).\displaystyle {\mathop {\mathrm {Var}}(\xi + \eta) = \mathop {\mathrm {Var}}(\xi) + \mathop {\mathrm {Var}}(\eta) + 2\mathop {\mathrm {Cov}}(\xi, \eta) = \mathop {\mathrm {Var}}(\xi) + \mathop {\mathrm {Var}}(\eta)}. 相比於 "隨機變數 ξ\xiη\eta 相互獨立" 這個條件, "隨機變數 ξ\xiη\eta 不相關" 這個條件要稍弱一些. 因此, 一般隨機變數 ξ\xiη\eta 不相關並不能推導出 ξ\xiη\eta 獨立.

4. 估計量

例題 6. 假設隨機變數 α\alpha13\frac {1}{3} 的機率分別取 0,π2,π0, \frac {\pi}{2}, \pi 三個值. 證明 : 隨機變數 ξ=sinα\xi = \sin {\alpha}η=cosα\eta = \cos {\alpha} 不相關但是 ξ\xiη\eta 關於機率 P\mathop {\mathbf {P}} 不獨立, 並求 ξ\xiη\eta 之間的函數關係.

證明證明 :

顯然, 隨機變數 ξ\xiη\eta 的值域為 Rξ={0,1},Rη={0,1,1}R_{\xi} = \left \{ 0, 1 \right \}, R_{\eta} = \left \{ 0, 1, -1 \right \}, 那麼有 P{ξ=0}=23,P{ξ=1}=13,P{η=0}=P{η=1}=P{η=1}=13,P{ξ=0,η=0}=0,P{ξ=1,η=0}=13,P{ξ=0,η=1}=13,P{ξ=1,η=1}=0,P{ξ=0,η=1}=13,P{ξ=1,η=1}=0.\displaystyle {\begin {aligned} &\mathop {\mathbf {P}} \left \{ \xi = 0 \right \} = \frac {2}{3}, \mathop {\mathbf {P}} \left \{ \xi = 1 \right \} = \frac {1}{3}, \\ &\mathop {\mathbf {P}} \left \{ \eta = 0 \right \} = \mathop {\mathbf {P}} \left \{ \eta = 1 \right \} = \mathop {\mathbf {P}} \left \{ \eta = -1 \right \} = \frac {1}{3}, \\ &\mathop {\mathbf {P}} \left \{ \xi = 0, \eta = 0 \right \} = 0, \mathop {\mathbf {P}} \left \{ \xi = 1, \eta = 0 \right \} = \frac {1}{3}, \\ &\mathop {\mathbf {P}} \left \{ \xi = 0, \eta = 1 \right \} = \frac {1}{3}, \mathop {\mathbf {P}} \left \{ \xi = 1, \eta = 1 \right \} = 0, \\ &\mathop {\mathbf {P}} \left \{ \xi = 0, \eta = -1 \right \} = \frac {1}{3}, \mathop {\mathbf {P}} \left \{ \xi = 1, \eta = 1 \right \} = 0. \end {aligned}} 因此, 我們有 E(ξη)=0×0+0×13+13×0+0×1+13×0+0×(1)=0\displaystyle {\mathop {\mathrm {E}}(\xi\eta) = 0 \times 0 + 0 \times \frac {1}{3} + \frac {1}{3} \times 0 + 0 \times 1 + \frac {1}{3} \times 0 + 0 \times (-1) = 0}E(ξ)=23×0+13×1=13,E(η)=13×0+13×(1)+13×1=0.\displaystyle {\mathop {\mathrm {E}}(\xi) = \frac {2}{3} \times 0 + \frac {1}{3} \times 1 = \frac {1}{3}, \mathop {\mathrm {E}}(\eta) = \frac {1}{3} \times 0 + \frac {1}{3} \times (-1) + \frac {1}{3} \times 1 = 0}. 於是, Cov(ξ,η)=E(ξη)E(ξ)E(η)=0.\displaystyle {\mathop {\mathrm {Cov}}(\xi, \eta) = \mathop {\mathrm {E}}(\xi\eta) - \mathop {\mathrm {E}}(\xi)\mathop {\mathrm {E}}(\eta) = 0}. 故隨機變數 ξ\xiη\eta 不相關. 然而, 對於任意 iRξ,jRηi \in R_{\xi}, j \in R_{\eta}, 都有 P{ξ=i,η=j}P{ξ=i}P{η=j},\displaystyle {\mathop {\mathbf {P}} \left \{ \xi = i, \eta = j \right \} \neq \mathop {\mathbf {P}} \left \{ \xi = i \right \}\mathop {\mathbf {P}} \left \{ \eta = j \right \}}, 且由 sin2α+cos2α=1\sin^{2} {\alpha} + \cos^{2} {\alpha} = 1 可得 : 隨機變數 ξ\xiη\eta 存在函數關係 ξ2+η2=1.\displaystyle {\xi^{2} + \eta^{2} = 1}.

\blacksquare

特別地, 若隨機變數 ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n} 兩兩不相關 (不一定兩兩獨立), 則有 Var(i=1nξi)=i=1nVar(ξi).\displaystyle {\mathop {\mathrm {Var}} \left (\sum \limits_{i = 1}^{n}\xi_{i} \right ) = \sum \limits_{i = 1}^{n}\mathop {\mathrm {Var}}(\xi_{i})}. 考慮兩個隨機變數 ξ\xiη\eta, 假設只對隨機變數 ξ\xi 進行觀測. 如果隨機變數 ξ\xiη\eta 相關, 則可以預期 : 已知 ξ\xi 的值可以對未觀測的隨機變數 η\eta 的值作出某種判斷.

我們把隨機變數 ξ\xi 的任何一個函數 f=f(ξ)f = f(\xi) 稱作隨機變數 η\eta 的一個估計量. 若有 E((ηf(ξ))2)=inffE((ηf(ξ))2),\displaystyle {\mathop {\mathrm {E}} \left ( (\eta - f^{*}(\xi))^{2} \right ) = \inf \limits_{f}{\mathop {\mathrm {E}} \left ( (\eta - f(\xi))^{2} \right )}}, 則稱 f=f(ξ)f^{*} = f^{*}(\xi) 為在均方意義下的最佳估計量 (the optimal estimator).

對於線性估計 λ(ξ)=a+bξ\lambda(\xi) = a + b\xi 類中, 我們接下來討論如何求得線性估計類中的最佳線性估計. 考慮函數 g(a,b)=E((ηf(ξ))2),\displaystyle {g(a, b) = \mathop {\mathrm {E}} \left ( (\eta - f(\xi))^{2} \right )}, 對多變數函數 g(a,b)g(a, b) 針對 aabb 求偏導數, 得 ga=2E(η(a+bξ)) 和 gb=2E((η(a+b)ξ)ξ).\displaystyle {\frac {\partial g}{\partial a} = -2\mathop {\mathrm {E}} \big ( \eta - (a + b\xi) \big ) \text { 和 } \frac {\partial g}{\partial b} = -2\mathop {\mathrm {E}} \big ( (\eta - (a + b)\xi)\xi \big )}.ga=0\frac {\partial g}{\partial a} = 0gb=0\frac {\partial g}{\partial b} = 0, 即可求出 λ\lambda 均方線性估計 λ=a+bξ\lambda^{*} = a^{*} + b^{*}\xi. 其中, a=E(η)bE(ξ)a^{*} = \mathop {\mathrm {E}}(\eta) - b^{*}\mathop {\mathrm {E}}(\xi), b=Cov(ξ,η)Var(ξ)b^{*} = \frac {\mathop {\mathrm {Cov}}(\xi, \eta)}{\mathop {\mathrm {Var}}(\xi)}. 即 λ(ξ)=E(η)+Cov(ξ,η)Var(ξ)(ξE(ξ)).\displaystyle {\lambda^{*}(\xi) = \mathop {\mathrm {E}}(\eta) + \frac {\mathop {\mathrm {Cov}}(\xi, \eta)}{\mathop {\mathrm {Var}}(\xi)}(\xi - \mathop {\mathrm {E}}(\xi))}.Δ=E((ηλ(ξ))2)\Delta^{*} = \mathop {\mathrm {E}} \big ( (\eta - \lambda^{*}(\xi))^{2} \big )估計值的均方誤差 (the mean-square error of estimation), 則有 Δ=E((ηλ(ξ))2)=Var(η)Cov(ξ,η)Var(ξ)=Var(η)(1ρ2(ξ,η)).\displaystyle {\Delta^{*} = \mathop {\mathrm {E}} \big ( (\eta - \lambda^{*}(\xi))^{2} \big ) = \mathop {\mathrm {Var}}(\eta) - \frac {\mathop {\mathrm {Cov}} \left (\xi, \eta \right )}{\mathop {\mathrm {Var}}(\xi)} = \mathop {\mathrm {Var}}(\eta) \left ( 1 - \rho^{2}(\xi, \eta) \right )}. 可見, ρ(ξ,η)\left | \rho(\xi, \eta) \right | 越大, 均方誤差 Δ\Delta^{*} 越小. 特別地, 當 ρ(ξ,η)=1|\rho(\xi, \eta)| = 1, 則 Δ=0\Delta^{*} = 0. 如果隨機變數 ξ\xiη\eta 不相關, 即 ρ(ξ,η)=0\rho(\xi, \eta) = 0, 則 λ(ξ)=E(η)\lambda^{*}(\xi) = \mathop {\mathrm {E}}(\eta). 於是, 在隨機變數 ξ\xiη\eta 不相關的情形下, 根據 ξ\xiη\eta 的估計為 E(η)\mathop {\mathrm {E}}(\eta).

5. 練習題

練習題 1.nn 個箱子中獨立地投擲 kk 個球, 假設每個球落入各箱子的機率為 1n\frac {1}{n}, 求非空箱子數量的期望.

:

定義隨機變數 ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n}. 當第 ii 個箱子中有球時, ξi=1\xi_{i} = 1; 否則, ξi=0\xi_{i} = 0. 其中, i=1,2,...,ni = 1, 2, ..., n. 記 η=ξ1+ξ2+...+ξn\eta = \xi_{1} + \xi_{2} + ... + \xi_{n}, 則隨機變數 η\eta 可以表示有球箱子的數量.

將球投入任一箱子中的機率為 1n\frac {1}{n}, 則球不投入任何箱子的機率為 11n1 - \frac {1}{n}. 由於 nn 個球的投擲相互獨立, 那麼 nn 個球都不投入任何箱子中的機率為 (11n)n.\displaystyle {\left ( 1 - \frac {1}{n} \right )^{n}}. 反之, 至少有一個球投入箱子的機率為 1(11n)n1 - \left ( 1 - \frac {1}{n} \right )^{n}. 於是, P{ξi=0}=(11n)n,P{ξi=1}=1(11n)n.\displaystyle {\mathop {\mathbf {P}} \left \{ \xi_{i} = 0 \right \} = \left ( 1 - \frac {1}{n} \right )^{n}, \mathop {\mathbf {P}} \left \{ \xi_{i} = 1 \right \} = 1 - \left ( 1 - \frac {1}{n} \right )^{n}}. 根據定義 4, 故有 E(ξi)=0×P{ξi=0}+1×P{ξi=1}=1(11n)n.\displaystyle {\mathop {\mathrm {E}}(\xi_{i}) = 0 \times \mathop {\mathbf {P}} \left \{ \xi_{i} = 0 \right \} + 1 \times \mathop {\mathbf {P}} \left \{ \xi_{i} = 1 \right \} = 1 - \left ( 1 - \frac {1}{n} \right )^{n}}. 那麼, 有 E(η)=E(ξ1+ξ2+...ξn)=E(ξ1)+E(ξ2)+...+E(ξn)=n(1(11n)n).\displaystyle {\begin {aligned} \mathop {\mathrm {E}}(\eta) &= \mathop {\mathrm {E}}(\xi_{1} + \xi_{2} + ... \xi_{n}) \\ &= \mathop {\mathrm {E}}(\xi_{1}) + \mathop {\mathrm {E}}(\xi_{2}) + ... + \mathop {\mathrm {E}}(\xi_{n}) \\ &= n \left (1 - \left ( 1 - \frac {1}{n} \right )^{n} \right ). \end {aligned}}

\blacksquare

自主習題 1.ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n} 是獨立的 Bernoulli 隨機變數, 且 P{ξi=0}=1λiΔ,P{ξi=1}=λiΔ.\displaystyle {\mathop {\mathbf {P}} \left \{ \xi_{i} = 0 \right \} = 1 - \lambda_{i}\Delta, \mathop {\mathbf {P}} \left \{ \xi_{i} = 1 \right \} = \lambda_{i}\Delta}. 其中, Δ>0,λi>0,i=1,2,...,n\Delta > 0, \lambda_{i} > 0, i = 1, 2, ..., n, 而 Δ\Delta 是較小的數. 記 o()o(\cdot) 表示 \cdot 的高階無窮小. 證明 :

  1. P{ξ1+ξ2+...+ξn=1}=Δi=1nλi+o(Δ2)\mathop {\mathbf {P}} \left \{ \xi_{1} + \xi_{2} + ... + \xi_{n} = 1 \right \} = \Delta \sum \limits_{i = 1}^{n}\lambda_{i} + o(\Delta^{2});
  2. P{ξ1+ξ2+...+ξn>1}=o(Δ2)\mathop {\mathbf {P}} \left \{ \xi_{1} + \xi_{2} + ... + \xi_{n} > 1 \right \} = o(\Delta^{2}).

自主習題 2. 證明 : 當 a=E(ξ)a = \mathop {\mathrm {E}}(\xi) 時, E((ξa)2)\mathop {\mathrm {E}} \left ((\xi - a)^{2} \right ) 達到最大下界 inf<a<+E((ξa)2),\displaystyle {\inf \limits_{-\infty < a < +\infty}{\mathop {\mathrm {E}} \left ((\xi - a)^{2} \right )}},inf<a<+E((ξa)2)=Var(ξ)\inf \limits_{-\infty < a < +\infty}{\mathop {\mathrm {E}} \left ((\xi - a)^{2} \right )} = \mathop {\mathrm {Var}}(\xi).

自主習題 3.Fξ(x)F_{\xi}(x) 是隨機變數 ξ\xi 的分佈函數, 而 mem_{e}Fξ(x)F_{\xi}(x) 的中位數, 即下列條件的點 Fξ(me)12Fξ(me).\displaystyle {F_{\xi}(m_{e}^{-}) \leq \frac {1}{2} \leq F_{\xi}(m_{e})}. 證明 : inf<a<+E(ξa)=E(ξme)\inf \limits_{-\infty < a < +\infty} \mathop {\mathrm {E}}( \left | \xi - a \right |) = \mathop {\mathrm {E}}(\left | \xi - m_{e} \right |).

自主習題 4.Pξ(x)=P{ξ=x},Fξ(x)=P{ξx}P_{\xi}(x) = \mathop {\mathbf {P}} \left \{ \xi = x \right \}, F_{\xi}(x) = \mathop {\mathbf {P}} \left \{ \xi \leq x \right \}, 證明 :

  1. 對於 a>0,<b<+a > 0, -\infty < b < +\infty, 有 Paξ+b(x)=Pξ(xaa)\displaystyle {P_{a\xi + b}(x) = P_{\xi} \left ( \frac {x - a}{a} \right )}Paξ+b(x)=Fξ(xba)\displaystyle {P_{a\xi + b}(x) = F_{\xi} \left ( \frac {x - b}{a} \right )} 成立;
  2. 如果 y0y \geq 0, 則 Fξ2(y)=Fξ(y)Fξ(y)+Pξ(y);\displaystyle {F_{\xi^{2}}(y) = F_{\xi}(\sqrt {y}) - F_{\xi}(-\sqrt {y}) + P_{\xi}(-\sqrt {y})};
  3. ξ+=max{ξ,0}\xi^{+} = \max \left \{ \xi, 0 \right \}, 則 Fξ+(x)={0x<0Fξ(x)x=0Fξ(x)x>0.\displaystyle {F_{\xi^{+}}(x) = \begin {cases} 0 & {x < 0} \\ F_{\xi}(x) & {x = 0} \\ F_{\xi}(x) & {x > 0}. \end {cases}}

自主習題 5. 假設對於隨機變數 ξ\xiη\etaE(ξ)=E(η)=0,Var(ξ)=Var(η)=1\mathop {\mathrm {E}}(\xi) = \mathop {\mathrm {E}}(\eta) = 0, \mathop {\mathrm {Var}}(\xi) = \mathop {\mathrm {Var}}(\eta) = 1, 而 ξ\xiη\eta 的相關係數為 ρ(ξ,η)\rho(\xi, \eta). 證明 : E(max{ξ2,η2})1+1ρ2.\displaystyle {\mathop {\mathrm {E}} \left (\max \left \{ \xi^{2}, \eta^{2} \right \} \right ) \leq 1 + \sqrt {1 - \rho^{2}}}.

自主習題 6.ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n} 是獨立隨機變數, φ1=φ1(ξ1,ξ2,...,ξk)\varphi_{1} = \varphi_{1}(\xi_{1}, \xi_{2}, ..., \xi_{k})φ2=φ2(ξk+1,ξk+2,...,ξn)\varphi_{2} = \varphi_{2}(\xi_{k + 1}, \xi_{k + 2}, ..., \xi_{n}) 分別是 (ξ1,ξ2,...,ξk)(\xi_{1}, \xi_{2}, ..., \xi_{k})(ξk+1,ξk+2,...,ξn)(\xi_{k + 1}, \xi_{k + 2}, ..., \xi_{n}) 的函數. 證明 : φ1\varphi_{1}φ2\varphi_{2} 獨立.

自主習題 7. 證明 : 隨機變數 ξ1,ξ2,...,ξn\xi_{1}, \xi_{2}, ..., \xi_{n} 獨立, 若且唯若對於一切 x1,x2,...,xnx_{1}, x_{2}, ..., x_{n}, 有 Fξ1,ξ2,...,ξn(x1,x2,...,xn)=Fξ1(x1)Fξ2(x2)...Fξn(xn).\displaystyle {F_{\xi_{1}, \xi_{2}, ..., \xi_{n}}(x_{1}, x_{2}, ..., x_{n}) = F_{\xi_{1}}(x_{1})F_{\xi_{2}}(x_{2})...F_{\xi_{n}}(x_{n})}. 其中, Fξ1,ξ2,...,ξn(x1,x2,...,xn)=P{ξ1x1,ξ2x2,...,ξnxn}F_{\xi_{1}, \xi_{2}, ..., \xi_{n}}(x_{1}, x_{2}, ..., x_{n}) = \mathop {\mathbf {P}} \left \{ \xi_{1} \leq x_{1}, \xi_{2} \leq x_{2}, ..., \xi_{n} \leq x_{n} \right \}.

自主習題 8. 證明隨機變數 ξ\xi 與自己獨立, 即 ξ\xiξ\xi 獨立, 若且唯若 ξ\xi 為常數.

自主習題 9. 問 : 隨機變數 ξ\xi 滿足什麼條件時, ξ\xisinξ\sin {\xi} 獨立.

自主習題 10.ξ\xiη\eta 時獨立隨機變數, 且 η0\eta \neq 0. 請通過機率 Pξ(x)P_{\xi}(x)Pη(y)P_{\eta}(y) 的形式表示機率 P{ξηz} 和 P{ξηz}.\displaystyle {\mathop {\mathbf {P}} \left \{ \xi\eta \leq z \right \} \text { 和 } \mathop {\mathbf {P}} \left \{ \frac {\xi}{\eta} \leq z \right \}}.

自主習題 11. 設隨機變數 ξ,η,ζ\xi, \eta, \zeta 滿足 ξ1,η1,ζ1\left | \xi \right | \leq 1, \left | \eta \right | \leq 1, \left | \zeta \right | \leq 1. 證明 A. G. Bell 不等式 E(ξη)E(ηζ)1E(ξη)\displaystyle {\left | \mathop {\mathrm {E}}(\xi\eta) - \mathop {\mathrm {E}}(\eta\zeta) \right | \leq 1 - \mathop {\mathrm {E}}(\xi\eta)} 成立.